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Abstract
Starting from the extended worldsheet superconformal algebras associated
with G2 manifolds, we extend the algebra to Joyce’s orbifolds with spin(7)

holonomy. We show how the mirror symmetry in manifolds with spin(7)

holonomy arises as the automorphism in the extended sperconformal algebra.
In one class of Joyce’s orbifolds, the automorphism of the superconformal
algebra can be realized as 14 kinds of T-dualities along the supersymmetric T4

toroidal fibrations in the manifolds with spin(7) holonomy. In this class of
examples, Joyce’s orbifolds are pairwise identified under the mirror symmetry.
We then discuss some interesting features of the mirror symmetry on the
manifolds with exceptional holonomy and how it is different from the Calabi–
Yau mirror symmetry.

PACS number: 11.25.−w
Mathematics Subject Classification: 14J33

1. Introduction

Mirror symmetry is a beautiful subject both in physics and mathematics. It was first conjectured
in [6] that there exists a symmetry which exchanges the complex moduli on one manifold with
the Kähler moduli on the dual manifold when we consider the string worldsheet propagation
on Calabi–Yau (CY) manifolds. The symmetry arises in the sense that the resulting physical
spectra of the mirror pair are isomorphic. This requires the Hodge numbers of the CY mirror
pair satisfy the condition bp,q(M) = bd−p,q(M̃). It was also shown that, assuming the mirror
symmetry, one could determine non-perturbative worldsheet instantons effect on CY M by
computing classical periods in its mirror M̃ [20]. In other words, one can utilize mirror
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symmetry to compute worldsheet instanton correction to the worldsheet three-point function,
namely, Yukawa couplings.

Another more intuitive perspective of mirror symmetry was proposed by Strominger, Yau
and Zaslow (SYZ) [7]. SYZ argued that the mirror transformation in CY is in fact equivalent to
the T-duality along the supersymmetric torus fibration in the CY manifolds, by considering the
mirror BPS soliton spectra in two theories (IIA/IIB). The moduli space of the supersymmetric
Langrangian branes is precisely the same as the mirror manifold. In this paper we will be
generalizing this notion to other manifolds with exceptional holonomy. Since this paper is not
about reviewing mirror symmetry and also it is such a huge subject, the readers interested in
various aspects of mirror symmetry are referred to [18, 19].

Some concrete mirror pairs of certain toroidal orbifolds with discrete torsions can be
found in [8], where the mirror symmetry is indeed realized as T-duality on toroidal T3 fibration
in the orbifolds. In these examples the discrete torsions will change under the mirror symmetry
transformation.

In [9, 10], Acharya discussed the existence of the mirror symmetry in IIA/IIB string theory
compactified on manifolds with exceptional holonomy, including G2 and spin(7) and argued
how the discrete torsion transforms under the T-duality along the four-dimensional torus T4

fibration. In [1], the authors indeed gave some concrete mirror pairs among Joyce’s orbifolds
with G2 holonomy, which are built from resolving or deforming T 7/Z3

2 orbifolds. They also
identified the mirror symmetry as an automorphism in the extended superconformal algebra
on manifolds with G2 holonomy.

Motivated by these known results, we generalize the chiral superconformal algebra to the
manifolds with spin(7) holonomy, and identify the corresponding automorphism in the algebra
as a combination of a T-duality in 8-direction and a generalized G2 mirror transformation or
a combination of two distinct G2 mirror transformations. The automorphism could also be
understood as T-duality on the supersymmetric T4 fibrations in the spin(7) manifolds. In
order to make the automorphism clearer, we give an example of one class of Joyce’s manifolds
with spin(7) holonomy and discrete torsions. In these examples there 14 kinds of T-dualities
along the T4 fibration , which can act like the algebra automorphism or mirror symmetry. They
are further classified into two categories, one of which does flip the discrete torsion and hence
leads to a topologically different Joyce’s orbifold while the other does not.

Since the extended superconformal algebra for G2 and spin(7) manifolds are equivalent
to the conformal algebra or the operator product expansion (OPE) of the tri-critical and critical
Ising model, we suggest that the mirror symmetry for the exceptional holonomy manifolds
might be realized in certain condensed matter system.

We also note that the mirror symmetry in the G2 manifolds could be realized as a
classical operation. Namely it is equivalent to changing the sign of the associative 3-form
or reversing the orientation of the associative three cycles. This should be contrasted with
the CY mirror symmetry, which is essentially a quantum symmetry involving the worldsheet
instanton effects2.

The paper is organized as follows. In section 2 we will review the mirror symmetry of CY
and G2 manifolds both from the viewpoints of the conformal field theory and the T-duality. In
section 3 we will give the construction of spin(7) extended superconformal algebra, identify
the automorphism in it as 14 kinds of T-dualities and classify them into two kinds as mentioned
above. In section 4 we will give conclusion and discussion, containing some suggestions for
the future study.

2 We would like to thank Edward Witten for pointing this out.
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2. Mirror symmetry for CY and G2 manifolds

To better orientate our readers we give a short review of mirror symmetry on CY orbifolds
(T 6/Z2

2) and Joyce’s G2 manifolds in terms of their sigma model superconformal algebras
[1, 3, 4].

2.1. Mirror symmetry of Calabi–Yau threefolds

For CY manifolds, mirror symmetry can be understood, from the viewpoint of the underlying
sigma model on CY manifolds, as the effect of a non-trivial automorphism of the sigma
model symmetry algebra that is always present for CY compactications, namely, extended
superconformal algebra [21]. This approach has also been successfully applied to the manifold
with G2 holonomy [1]. Since the extended superconformal symmetry is so powerful and allows
us to gain insights into the structure of the manifolds and construct the space of marginal
deformations of the sigma model, we will try to generalize this approach to the manifolds with
spin(7) holonomy. Now we start with the review of CY and G2 cases.

The generators of the N = 2 chiral superconformal algebra for string propagation on
CY target space are the stress–energy tensor T CY, two supercurrents GCY,G′

CY of conformal
weight 3/2 and the U(1) current JCY, along with a complex current �CY of conformal weight
3/2 constructed from the worldsheet fermions (ψi and ψ̃ i) and its superpartner �CY. The
complex current �CY should be thought of as the holomorphic 3-form of the CY. Now we
specialize to a class of T 6/Z2

2 orbifolds, in which the T6 is the six-dimensional torus, with
coordinates xi(i = 1, . . . , 6) being periodically identified, xi ∼ xi + 1. The Z2

2 actions are
given by

α = (x1, x2,−x3,−x4,−x5,−x6),
(2.1)

β = (−x1,−x2, x3, x4,−x5,−x6).

The superconformal generators have free field realization and are given by [1, 12, 21]

TCY = 1

2

6∑

j=1

: ∂xj ∂xj : −1

2

6∑

j=1

: ψj∂ψj :,

GCY =
6∑

j=1

: ψj∂xj :, G′
CY =

3∑

j=1

(ψ2j−1∂x2j − ψ2j ∂x2j−1), JCY =
3∑

j=1

ψ2j−1ψ2j ,

�CY = ψ1ψ3ψ5 − ψ1ψ4ψ6 − ψ2ψ3ψ6 − ψ2ψ4ψ5

+ i(ψ1ψ3ψ6 + ψ1ψ4ψ5 + ψ2ψ3ψ5 − ψ2ψ4ψ6),

�CY := {GCY,�CY}, (2.2)

where ψi are ψ̃ i are the (1, 1) worldsheet superpartners of xi for i = 1, . . . , 6. The other half
chiral algebra (anti-holomorphic) can be written down similarly in terms of ∂̄x and ψ̃ .

There exists a non-trivial automorphism in the superconformal algebra or equivalently the
OPE of the operators, which leave the N = 1 superconformal subalgebra generated by TCY

and GCY invariant. The automorphism is given by

G′
CY → −G′

CY, J → −J , � → �∗, � → �∗, TCY → TCY, GCY → GCY. (2.3)

3
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Recall that from the viewpoint of the worldsheet superconformal algebra, the CY
mirror symmetry is achieved by applying the aforementioned automorphism (2.3) to one
of the chiralities of the algebra, for instance, G̃′

CY, J̃CY, �̃CY and �̃CY. Here the tilde ∼ means
the anti-holomorphic part of the superconformal algebra. On the other hand, also recall that
the T-duality along the ith direction will leave ∂xi and ψi invariant but reverse ∂̄xi and ψ̃i .
Therefore, we can also easily see that the T-duality on T3 fibrations in the following directions
(which appear in the indices of �CY ) also generates the mirror symmetry

{(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5), (1, 3, 6), (1, 4, 5), (2, 3, 5), (2, 4, 6)}. (2.4)

Some concrete examples of these T-dualities acting on the T3 fibration and changing the
discrete torsion can be found in [1, 8].

2.2. Compact orbifolds with G2 holonomy

In this and the following sections, we first give an example of Joyce’s orbifolds which were
constructed by disingularizing T 7/Z3

2 and show how the choices in resolving or deforming
the singularities can result in topologically different spaces. After that, we will write down the
G2 extended chiral superconformal algebra and look for the automorphisms in it. We will find
that applying the automorphism transformation to the superconformal generators with one of
two chiralities is equivalent to applying T-dualities along certain T3 toroidal fibrations. Then
these T-dualities will be interpreted as the mirror symmetry transformation.

Consider the orbifolds of T 7/�, where T7 is the seven-dimensional torus with coordinates
xi(i = 1, . . . , 7) being periodically identified, xi ∼ xi + 1. The discrete � is generated by
three Z2 actions given by [3]

α = (−x1,−x2,−x3,−x4, x5, x6, x7),

β = (−x1, 1/2 − x2, x3, x4,−x5,−x6,−x7), (2.5)

γ = (−x1, x2,−x3, x4,−x5, x6,−x7).

In order to desingularize the orbifolds, one has to know, for instance, how the 16 α fixed
three-dimensional torus T3s get identified under the group generated by β and γ . What we
found in this example is the 16 T 3s fixed by α or β are reduced to four orbits of order 4 by
the free-acting of the 〈β, γ 〉 or 〈γ, α〉. In the γ -fixed T3 sector, the group 〈α, β〉 only reduce
16 T3 to eight orbits of order 2 since αβ acts trivially on them.

The choices of blowing-up or deforming also come from this γ -fixed sector.
From a discrete torsion analysis based on the requirement of modular invariance
[1], we know that blowing-up (deforming) corresponds to discrete torsion in the
γ -fixed sector εγ ;f̃ = 1 (−1) and the even (odd) αβ parity. By virtue of the correspondence
between the Ramond–Ramond (RR) ground states and the cohomologies, we can write down
the RR ground states in the γ -fixed sector. Among 8 γ -fixed T3s, we can choose lαβ parity
even blowing-ups and (8−l)αβ parity odd case deformations. We denote such a desingularized
manifold by Xl. It has been shown by Joyce that Xl is indeed a manifold with G2 holonomy
[3, 4].

Now we can perform an analysis on how the blowing-up and deformation change the
Betti numbers. For αβ parity even case (blowing-up), we have

εγ ;f̃ = 1,

|0, 0; f̃ 〉γ , ψ2+|0, 0; f̃ 〉γ , ψ4+ψ6+|0, 0; f̃ 〉γ , ψ2+ψ4+ψ6+|0, 0; f̃ 〉γ , (2.6)

where f̃ = 1, . . . , l labelling the γ -fixed points after α or β identification.
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For αβ parity odd case (deformation), the RR ground states are

εγ ;f̃ = −1,

ψ4+|0, 0; f̃ 〉γ , ψ6+|0, 0; f̃ 〉γ , ψ2+ψ4+|0, 0; f̃ 〉γ , ψ2+ψ6+|0, 0; f̃ 〉γ , (2.7)

where f̃ = l + 1, . . . , 8. One should regard |0, 0; f̃ 〉γ as the harmonic 2-form associated with
the exceptional divisors of the blowing-up (deformation). Therefore, blowing-up contributes
1 to b2 and 1 to b3 while the deformation increases b3 by 2.

For the RR ground states in the γ -fixed sector, the operation αβ reverses the 4th and 6th
directions. Therefore, we can express it as

αβ = 1
4ψ4

0 ψ6
0 ψ̃4

0 ψ̃6
0 εγ ;f̃ . (2.8)

After summing up the contributions from various sectors, we have the following Betti
numbers for Xl:

(b0, . . . , b7) = (1, 0, 8 + l, 47 − l, 47 − l, 8 + l, 0, 1). (2.9)

2.3. G2 extended superconformal algebra

The algebra on manifolds with G2 holonomy is generated by appending a spin-3/2 operator
�G2 and its superpartnerXG2 of conformal weight two to the N = 1 superconformal subalgebra
spanned by TG2 and GG2 [12, 17]. In our basis of fields xi and ψi , the generators are given by

TG2 = 1

2

7∑

j=1

: ∂xj ∂xj : −1

2

7∑

j=1

: ψj∂ψj :, GG2 =
6∑

j=1

: ψj∂xj :,

�G2 = ψ1ψ3ψ6 + ψ1ψ4ψ5 + ψ2ψ3ψ5 − ψ2ψ4ψ6 + ψ1ψ2ψ7 + ψ3ψ4ψ7 + ψ5ψ6ψ7,

XG2 = −ψ2ψ4ψ5ψ7 − ψ2ψ3ψ6ψ7 − ψ1ψ4ψ6ψ7 + ψ1ψ3ψ5ψ7 − ψ3ψ4ψ5ψ6

− ψ1ψ2ψ5ψ6 − ψ1ψ2ψ3ψ4 − 1

2

7∑

j=1

: ψj∂ψj :. (2.10)

However this is not the complete set of the generators of the algebra because we can
obtain two new operators KG2 and MG2 , superpartners of �G2 and XG2 , by performing the
OPE with GG2 ,

GG2(z)�G2(w) = 1

z − w
KG2(w) + · · ·

(2.11)
GG2(z)XG2(w) = −1

2

1

(z − w)2
GG2(w) +

1

z − w
MG2(w) + · · · ,

where the ellipsis refers to the regular parts in the OPE. KG2 and MG2 can be explicitly written
out in terms of ∂xi and ψi [17] but we omit the expressions since they are tedious and not
needed in the following discussion. We also have the antiholomorphic part of the extended
superconformal algebra, which is not listed here. The extended superconformal algebra has
one obvious but non-trivial automorphism [12, 17]:

�G2 → −�G2; KG2 → −KG2; TG2 , GG2 , XG2 , MG2 unchanged. (2.12)

Since geometrically we should think of �G2 as the associative 3-form on the G2 manifold,
this mirror symmetry has an interpretation of changing the sign of the 3-form or reversing the
orientation of the associative three cycles calibrated by �G2 .

5
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If the G2 manifolds are of the form (CY3 × S1)/Z2 as the Joyce G2 manifolds, we can
also reformulate the superconformal generators in terms of the CY generators as follows:

TG2 = TCY + 1
2 : ∂x7∂x7 : − 1

2 : ψ7∂ψ7 :, GG2 = GCY+ : ψ7∂x7 :,

�G2 = Im(�CY)+ : JCYψ7 :,

XG2 =: Re(�CY)ψ7 : + 1
2 : JCYJCY : − 1

2 : ψ7∂ψ7 :, (2.13)

KG2 = Im(�CY)+ : JCY∂x7 : + : G′
CYψ7 :,

MG2 =: Re(�CY)ψ7 : − : Re(�CY)∂x7 : + : ∂x7∂ψ7 : + : JCYG′
CY : − 1

2∂GCY.

Similarly, the generalized mirror symmetry for manifolds with G2 holonomy is to apply
the above automorphism to one of the two chiralities. On the other hand, the T-duality in the
following (i1, i2, i3) directions can obviously realize the automorphism:

(i1, i2, i3) ∈ I +
3 ∪ I−

3 ,

I +
3 = {(2, 4, 6), (2, 3, 5), (1, 2, 7)}, (2.14)

I−
3 = {(1, 3, 6), (1, 4, 5), (3, 4, 7), (5, 6, 7)}.

If we combine any two different T-dualities in (2.14), we obtain another set of T-dualities
acting on toroidal T4, which also leave the extended chiral algebra invariant. Hence, they are
mirror symmetries which will take IIA (IIB) to IIA (IIB):

(i1, i2, i3, i4) ∈ I +
4 ∪ I−

4 ,

I +
4 = {(1, 3, 5, 7), (1, 4, 6, 7), (3, 4, 5, 6)}, (2.15)

I−
4 = {(2, 4, 5, 7), (2, 3, 6, 7), (1, 2, 5, 6), (1, 2, 3, 4)}.

Recall that T-duality in the ith direction will give ψ̃ i a minus sign. It is not hard to see
that I +

3 ( I +
4 ) does not change the discrete torsion while I−

3 ( I−
4 ) does. We summarize mirror

symmetry on G2 holonomy manifold according to the actions of the T-dualities along I±
3 as

follows:

IIA(IIB)/Xl ←→ IIB(IIA)/X8−l , under I−
3 ,

(2.16)
IIA(IIB)/Xl ←→ IIA(IIB)/Xl, under I +

3 .

3. Mirror symmetry for spin(7) manifolds

3.1. Joyce’s construction of spin(7) manifolds

There are many known examples of Joyce’s spin(7) orbifolds [2]. For simplicity, let us take
one class of Joyce’s orbifolds in which we have multiple choices in desingularizing T 8/Z4

2
as above, so that the T-duality will exchange different desingularizations. Now let us take
T 8/Z4

2 , where T8 is the eight-dimensional torus with all periodicities 1. And the Z4
2 generators

act as follows:

α = (−x1,−x2,−x3,−x4, x5, x6, x7, x8),

β = (x1, x2, x3, x4,−x5,−x6,−x7,−x8),
(3.1)

γ = (1/2 − x1,−x2, x3, x4, 1/2 − x5,−x6, x7, x8),

δ = (−x1, x2, 1/2 − x3, x4, 1/2 − x5, x6, 1/2 − x7, x8).

Again, the periodicity of xi is set to be unity. In general, the singularities arises in five
different types and the corresponding desingularizations are listed as follows.

6
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Type (1): increase b2 by 1, b3 by 4, b4+ by 3 and b4− by 3. The singularity type is
T 4 × (

B4
ε /{±1}), where B4

ε is defined as an open ball of radius ε about 0 in R4.
Type (2): increase b2 by 1, b4+ by 3 and b4− by 3. The singularity if of the form(

T 4/{±1} × (
B4

ε /{±1}).
Type (3): increase b4+ by 1. The singularity is

(
B4

ε /{±1} × (
B4

ε /{±1}).
Type (4A): increase b2 by 1, b3 by 2, b4+ by 1 and b4− by 1.
Type (4B): increase b3 by 2, b4+ by 2 and b4− by 2. The singularity of type(4)

is an isometric involution σ of T 4 × (
B4

ε /{±1}), where σ = (1/2 +
x1, x2,−x3,−x4, y1, y2,−y3,−y4). Namely, the singular set is isomorphic to(
T 4 × (

B4
ε /{±1}))/〈 σ 〉.

Type (5A): increase b2 by 1, b4+ by 1 and b4− by 1.
Type (5B): increase b4+ by 2, and b4− by 2. The singularity of type(5) is isomorphic to(

T 4/{±1} × B4
ε /{±1})/〈 σ 〉.

As a result, one finds the singular set of this orbifold contains 2 type(1), 8 type(2), 64 type(3)
and 4 type(4). If we choose to have j type(4A) and (4 − j) type(4B) and add up all the Betti
numbers in the twisted sectors as well as the untwisted sector, we have Joyce’s manifolds Yj

with

b2 = 10 + j, b3 = 16, b4+ = 109 − j, b4− = 45 − j, j = 0, . . . , 4 (3.2)

Â = 1
24 (−1 + b1 − b2 + b3 + b4+ − 2b4−) = 1. (3.3)

It was shown by Joyce that Yj is compact manifolds with spin(7) holonomy [2], and
therefore, they are suitable for string theory compactification. To be more precise, the
4 type(4) singularities come from 16 γ -fixed 4 torus T4s. Note that αδ acts trivially on
these T4s and the group elements α, β, αβ and βδ act freely on them and reduce the number
of T4s to 4. Therefore, we have RR ground states |0, 0; f̃ = 1, 2, 3, 4〉γ corresponding to the
harmonic two forms of the exceptional divisors. Similarly, the αδ parity of |0, 0; f̃ 〉γ is also
given by the discrete torsion εγ,f̃ . Since the action of αδ inverses directions 4 and 7, we can
construct RR ground states accordingly as follows.

For αδ parity even case, we have

εγ ;f̃ = 1,

|0, 0; f̃ 〉γ , ψ3+|0, 0; f̃ 〉γ , ψ8+|0, 0; f̃ 〉γ , ψ3+ψ8+|0, 0; f̃ 〉γ , ψ4+ψ7+|0, 0; f̃ 〉γ ,

ψ3+ψ4+ψ7+|0, 0; f̃ 〉γ , ψ4+ψ7+ψ8+|0, 0; f̃ 〉γ , ψ3+ψ4+ψ7+ψ8+|0, 0; f̃ 〉γ . (3.4)

For the αδ parity odd case, the RR ground states are

εγ ;f̃ = −1,

ψ4+|0, 0; f̃ 〉γ , ψ7+|0, 0; f̃ 〉γ ,

ψ3+ψ4+|0, 0; f̃ 〉γ , ψ3+ψ7+|0, 0; f̃ 〉γ , ψ4+ψ8+|0, 0; f̃ 〉γ , ψ7+ψ8+|0, 0; f̃ 〉γ ,

ψ3+ψ4+ψ8+|0, 0; f̃ 〉γ , ψ3+ψ7+ψ8+|0, 0; f̃ 〉γ . (3.5)

Obviously, we obtain �b2 = 1,�b3 = 2,�b4 = 2 in the parity even case, and
�b3 = 2,�b4 = 4 in the parity odd case, which agrees with the mathematical analysis in
[2]. Taking j type(4A) and (4 − j) type(4B) and collecting all the Betti number contributions
from various places, we obtain the Betti numbers in (3.2).

7
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3.2. spin(7) extended superconformal algebra

Now consider a direct product space M × S1, where M is a manifold with G2 holonomy. It
is always possible to define a spin(7) structure. And the Cayley 4-form φ4 in this manifold
with spin(7) structure can be written as

φ4 = ∗φ3 + φ3 ∧ dx8, (3.6)

where φ3 is the calibrated 3-form in the G2 manifold.
It is also true that in this example in the previous section T 7/〈α, γ, δ〉 gives rise to Joyce’s

7-manifold of G2 holonomy, if we forget about 8-direction. In fact, we can have a more generic
statement that T 7/〈α, γ, δ〉 is always a manifold with G2 holonomy for any half-integer choices
of the constants ci [11], where

α = (−x1,−x2,−x3,−x4, x5, x6, x7),

γ = (c1 − x1, c2 − x2, x3, x4, c5 − x5, c6 − x6, x7), (3.7)

δ = (c1 − x1, x2, c3 − x3, x4, c5 − x5, x6, c7 − x7).

If we reformulate the action of β in the previous section, we will find that β acts as

β : x8 → −x8, β∗(φ3) = −φ3, β∗(∗φ3) = ∗φ3. (3.8)

In this example, Z2 action β turns the spin(7) structure into the spin(7) holonomy.
However, it is not clear that we can always form manifolds with spin(7) holonomy by
modding out this kind of Z2 involution on G2 × S1.

Therefore, at least in Joyce’s orbifolds, relation (3.6) enables us to write down the
expression of the stress–energy tensor Tspin(7), the supercurrent Gspin(7), a spin-2 operator
Xspin(7) and its spin-5/2 superpartner Mspin(7) in terms of the corresponding quantities in G2

manifolds [17]:

Tspin(7) = TG2 + 1
2 : ∂x8∂x8 : − 1

2 : ψ8∂ψ8 :,

Gspin(7) = GG2 + : ψ8∂x8 :,

Xspin(7) = XG2 + �G2ψ
8 + 1

2ψ8∂ψ8, (3.9)

Mspin(7) = [Gspin(7),Xspin(7)]

= ∂x8�G2 − KG2ψ
8 − MG2 + 1

2∂2x8ψ8 − 1
2∂x8∂ψ8.

From these generators for the extended supercomformal algebra, it is not difficult to
see that the combination of the G2 automorphism (2.12) and the T-duality in 8-direction is
an automorphism in the superconformal algebra. In addition, the T-duality in (2.15) is also
an automorphism in the algebra. Therefore, we have a list of 14 T-dualities on T4 toroidal
fibrations which generate the mirror symmetry

{(2, 4, 6, 8), (2, 3, 5, 8), (1, 2, 7, 8), (1, 3, 6, 8), (1, 4, 5, 8), (3, 4, 7, 8),

(5, 6, 7, 8), (1, 3, 5, 7), (1, 4, 6, 7), (3, 4, 5, 6), (2, 4, 5, 7), (2, 3, 6, 7),

(1, 2, 5, 6), (1, 2, 3, 4)}. (3.10)

The first line consists of T-dualities in directions in (2.14) and 8-direction. The second line
is the same as the directions listed in (2.15). In this spin(7) case, we do not have the similar
relation like (2.12). Therefore, in order to visualize the automorphism in the superconformal
algebra, we have to express the spin(7) generators and the algebra in terms of G2 generators

8



J. Phys. A: Math. Theor. 43 (2010) 235403 W-Y Chuang

and construct our desirable mirror transformation from G2 automorphism (2.12), (2.14) and
(2.15). Finally, the expression of αδ in the γ -fixed sector is

αδ = 1
4ψ4

0 ψ7
0 ψ̃4

0 ψ̃7
0 εγ ;f̃ . (3.11)

By the similar reasoning, the 14 T-dualities are divided into two sets J±
4 :

(i1, i2, i3, i4) ∈ J +
4 ∪ J−

4 ,

J +
4 = {(2, 3, 5, 8), (1, 3, 6, 8), (3, 4, 7, 8), (1, 4, 6, 7), (2, 4, 5, 7), (1, 2, 5, 6)},

(3.12)
J−

4 = {(2, 4, 6, 8), (1, 2, 7, 8), (1, 4, 5, 8), (5, 6, 7, 8), (1, 3, 5, 7), (3, 4, 5, 6),

(2, 3, 6, 7), (1, 2, 3, 4)}.
The T-duality actions in J±

4 on type-II superstring theory are thus summarized by

IIA(IIB)/Yj ←→ IIA(IIB)/Y4−j , under J−
4 ,

(3.13)
IIA(IIB)/Yj ←→ IIA(IIB)/Yj , under J +

4 .

So far we only consider one class of the spin(7) manifolds constructed by Joyce, but we
believe that there should exist many more other examples of the mirror spin(7) pairs.

4. Conclusion and discussion

In this paper we have generalized the construction of [1] to Joyce’s manifolds with spin(7)

holonomy and shown, in a class of the examples of Joyce’s spin(7) manifolds, how the mirror
symmetry is realized in the worldsheet superconformal algebra as a combination of a T-duality
in 8-direction and a G2 mirror symmetry transformation, or a combination of two distinct G2

mirror transformations. The spin(7) mirror transformation contains 14 different kinds of
T-dualities on the supersymmetric T4 fibrations. By an analysis on the changes of discrete
torsions in the RR sector, we classify these 14 T-dualities into 2 sorts, one of which changes
the discrete torsions and the other does not. The T-dualities which will flip the discrete torsions
will then change the Betti number of the manifolds.

Another interesting fact is that the extended worldsheet superconformal algebra on G2

manifolds is equivalent to the OPE of the tri-critical Ising model with central charge 7/10,
while the spin(7) superconformal algebra is the same as the Ising model OPE [17]. In both
cases, the higher dimensional operators play the role of higher spin operators in the W-algebras.
It is natural to propose that the mirror symmetries discussed in this paper can be realized as
certain duality phenomena in the condensed matter system! It will be very interesting to
understand this better.

We also note that the mirror symmetry in the G2 manifolds could be realized as a classical
operation. Namely it is equivalent to reversing the orientation of the associative three cycles.
This should be contrasted with the CY mirror symmetry, which is essentially a quantum
symmetry. It is very likely that the spin(7) mirror symmetry is also a classical operation.
However, it is still subject to further investigation.

In [13], the authors completed a cycle of the dualities by explicitly performing the T-
duality on T3 fibration and a G2 flop in M-theory. It would be interesting to generalize the
computation to a duality cycle involving spin(7) and G2 manifolds and understand how the
generalized mirror symmetry lies in this picture [15].

9
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In order to understand the G2/spin(7) mirror symmetry better, one could try to T-dualize
the known various non-compact metric solutions with G2/spin(7) holonomy [16] and see how
they are connected through mirror symmetry. In the CY case, NS-NS fluxes can turn the
CY target space into half-flat [14] . The generalized mirror symmetry for G2 and spin(7) in
the presence of the background fluxes also demands some further study. Finally, it would
also be interesting to see how we can fit the G2 or spin(7) mirror symmetry into the
correspondence of heterotic(G2)/ IIA(G2 orientifold)/M-theory(spin(7)) [5] . It would be
interesting to consider the topological twisted worldsheet sigma model on spin(7) manifolds.
Some related construction on the G2 manifolds has been provided in [22]. The worldsheet
topological model study will definitely unravel more of the unknown features of the generalized
mirror symmetry in this paper!
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